Referencias

Aggarwal, Charu C. 2017. Outlier Analysis. Cham: Springer.

Birant, Derya, and Alp Kut. 2006. “Spatio-Temporal Outlier Detection in Large Databases.” Journal of Computing and Information Technology 14 (4): 291. https://doi.org/10.2498/cit.2006.04.04.

Chambers, John M., William S. Cleveland, Beat Kleiner, and Paul A. Tukey, eds. 1983. Graphical Methods for Data Analysis. The Wadsworth Statistics/Probability Series. Belmont, Calif.: Wadsworth [u.a.].

Chang, Winston, and Barbara Borges Ribeiro. 2018. Shinydashboard: Create Dashboards with ’Shiny’. https://CRAN.R-project.org/package=shinydashboard.

Chang, Winston, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPherson. 2020. Shiny: Web Application Framework for R. https://CRAN.R-project.org/package=shiny.

Dowle, Matt, and Arun Srinivasan. 2020. Data.table: Extension of ‘Data.frame‘. https://CRAN.R-project.org/package=data.table.

Duan, Lian, Lida Xu, Ying Liu, and Jun Lee. 2009. “Cluster-Based Outlier Detection.” Annals of Operations Research 168 (1): 151–68. https://doi.org/10.1007/s10479-008-0371-9.

Han, Jiawei, and Micheline Kamber. 2012. Data Mining: Concepts and Techniques. 3rd ed. Burlington, MA: Elsevier.

Hautamaki, V., I. Karkkainen, and P. Franti. 2004. “Outlier Detection Using K-Nearest Neighbour Graph.” In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 430–33 Vol.3. Cambridge, UK: IEEE. https://doi.org/10.1109/ICPR.2004.1334558.

Hawkins, D. M. 1980. Identification of Outliers. Dordrecht: Springer Netherlands.

Hoaglin, David C., Frederick Mosteller, and John Wilder Tukey, eds. 1983. Understanding Robust and Exploratory Data Analysis. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.

Hodge, Victoria, and Jim Austin. 2004. “A Survey of Outlier Detection Methodologies.” Artificial Intelligence Review 22 (2): 85–126. https://doi.org/10.1023/B:AIRE.0000045502.10941.a9.

Hyndman, Rob J., and Yanan Fan. 1996. “Sample Quantiles in Statistical Packages.” The American Statistician 50 (4): 361–65. https://doi.org/10.2307/2684934.

Mingqiang, Zhou, Huang Hui, and Wang Qian. 2012. “A Graph-Based Clustering Algorithm for Anomaly Intrusion Detection.” In 2012 7th International Conference on Computer Science & Education (ICCSE), 1311–4. Melbourne, Australia: IEEE. https://doi.org/10.1109/ICCSE.2012.6295306.

Petrovskiy, M. I. 2003. “Outlier Detection Algorithms in Data Mining Systems.” Programming and Computer Software 29 (4): 228–37. https://doi.org/10.1023/A:1024974810270.

Raschka, Sebastian. 2016. Python Machine Learning: Unlock Deeper Insights into Machine Learning with This Vital Guide to Cutting-Edge Predictive Analytics. Community Experience Distilled. Birmingham Mumbai: Packt Publishing open source.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Sievert, Carson, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec, and Pedro Despouy. 2020. Plotly: Create Interactive Web Graphics via ’Plotly.js’. https://CRAN.R-project.org/package=plotly.

Tukey, John Wilder. 1977. Exploratory Data Analysis. Addison-Wesley Series in Behavioral Science. Reading, Mass: Addison-Wesley Pub. Co.

Wickham, Hadley, and Jennifer Bryan. 2019. Readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl.

World Bank. 2018. “From Spreadsheets to Suptech : Technology Solutions for Market Conduct Supervision.” In. Washington, DC: World Bank. http://hdl.handle.net/10986/29952.

Xie, Yihui, Joe Cheng, and Xianying Tan. 2020. DT: A Wrapper of the Javascript Library ’Datatables’. https://CRAN.R-project.org/package=DT.